If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4w^2+25w-21=0
a = 4; b = 25; c = -21;
Δ = b2-4ac
Δ = 252-4·4·(-21)
Δ = 961
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{961}=31$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(25)-31}{2*4}=\frac{-56}{8} =-7 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(25)+31}{2*4}=\frac{6}{8} =3/4 $
| m-38+93-30=116 | | 2x+4(x+1)=9(x+4/3) | | 2x+1=5x−14 | | 12s-5=19 | | 4x-3x-2=-2+x | | 21x+111=10x | | v/5+16=27 | | 3/4y-1/8=1/4y+1 | | 2k-41-3k=104 | | 7n-11=19-5n | | 10=y/4-13 | | X^2-19=-2x^2+106 | | 68+-23s=873 | | 2(355-5a)=0 | | 15+4m=m | | n/20-351=-331 | | 2x=96x*6 | | -5n+7-4n=-11 | | -48;=12;p=66 | | n/20−351=-331 | | 5|x+7|-14=8 | | y/15-2=5 | | 2(3)+2y=14 | | u/9=-42 | | 3k-14k+25=2-6k-13 | | y/15−2=5 | | 2+4x+10=3x-2 | | -7j-8=8+9j | | 31=t/7+28 | | -4m-5-4=-29 | | 3(7+2x)+3=(5+x)-9(x+1) | | 2(-4+7x)=-148 |